Struct libreda_db::prelude::Vector

pub struct Vector<T> {
    pub x: T,
    pub y: T,
}
Expand description

Vector defines a two dimensional vector with x and y components in the Euclidean plane.

Fields§

§x: T

x coordinate.

§y: T

y coordinate.

Implementations§

§

impl<T> Vector<T>

pub fn new(x: T, y: T) -> Vector<T>

Create a new vector with x and y coordinates.

Examples
use iron_shapes::vector::Vector;
let a = Vector::new(2, 3);
assert_eq!(a.x, 2);
assert_eq!(a.y, 3);
§

impl<T> Vector<T>where T: Copy + Zero + PartialOrd<T> + Sub<T, Output = T>,

pub fn norm1(&self) -> T

Get 1-norm of vector, i.e. the sum of the absolute values of its components.

Examples
use iron_shapes::vector::Vector;
let a = Vector::new(-2, 3);
assert_eq!(a.norm1(), 5);
§

impl<T> Vector<T>where T: Zero + PartialOrd<T> + Mul<T, Output = T> + Sub<T, Output = T> + Copy,

pub fn orientation_of(&self, other: Vector<T>) -> Orientation

Check if other is oriented clockwise or counter-clockwise respective to self.

Examples
use iron_shapes::vector::Vector;
use iron_shapes::types::Orientation;

let a = Vector::new(1, 0);
let b = Vector::new(1, 1);
let c = Vector::new(1, -1);
let d = Vector::new(2, 0);

assert_eq!(a.orientation_of(b), Orientation::CounterClockWise);
assert_eq!(a.orientation_of(c), Orientation::ClockWise);
assert_eq!(a.orientation_of(d), Orientation::Straight);
§

impl<T> Vector<T>where T: Mul<T, Output = T> + Add<T, Output = T> + Copy,

pub fn norm2_squared(&self) -> T

Get squared 2-norm of vector.

Examples
use iron_shapes::vector::Vector;
let a = Vector::new(2, 3);
assert_eq!(a.norm2_squared(), 2*2+3*3);

pub fn dot(&self, other: Vector<T>) -> T

Calculate scalar product.

Examples
use iron_shapes::vector::Vector;

let a = Vector::new(1, 2);
let b = Vector::new(3, 4);

assert_eq!(a.dot(b), 1*3 + 2*4);
§

impl<T> Vector<T>where T: Mul<T, Output = T> + Sub<T, Output = T> + Copy,

pub fn cross_prod(&self, other: Vector<T>) -> T

Calculate cross product.

Examples
use iron_shapes::vector::Vector;

let a = Vector::new(2, 0);
let b = Vector::new(0, 2);

assert_eq!(a.cross_prod(b), 4);
assert_eq!(b.cross_prod(a), -4);
§

impl<T> Vector<T>where T: CoordinateType + NumCast,

pub fn cast_to_float<F>(&self) -> Vector<F>where F: CoordinateType + Float + NumCast,

Convert vector into a vector with floating point data type.

§

impl<T> Vector<T>where T: Float<Output = T, Output = T> + Mul<T> + Add<T> + Copy,

pub fn norm2(&self) -> T

Get 2-norm of vector (length of vector).

Examples
use iron_shapes::vector::Vector;
let a = Vector::new(2.0, 3.0);
let norm2 = a.norm2();
let norm2_sq = norm2 * norm2;
let expected = a.norm2_squared();
assert!(norm2_sq < expected + 1e-12);
assert!(norm2_sq > expected - 1e-12);

pub fn normalized(&self) -> Vector<T>

Return a vector with the same direction but length 1.

Panics

Panics if the vector has length 0.

pub fn normal(&self) -> Vector<T>

Return the normal vector onto this vector. The normal has length 1.

Panics

Panics if the vector has length 0.

§

impl<T> Vector<T>where T: Copy + NumCast,

pub fn length<F>(&self) -> Fwhere F: Float,

Calculate length of vector.

Similar to Vector::norm2 but does potentially return another data type for the length.

Examples
use iron_shapes::vector::Vector;
let a = Vector::new(2.0, 3.0);
let length: f64 = a.length();
let norm2_sq = length * length;
let expected = a.norm2_squared();
assert!(norm2_sq < expected + 1e-12);
assert!(norm2_sq > expected - 1e-12);

Trait Implementations§

§

impl<T> Add<Vector<T>> for Vector<T>where T: Add<T, Output = T>,

Vector addition.

§

type Output = Vector<T>

The resulting type after applying the + operator.
§

fn add(self, rhs: Vector<T>) -> Vector<T>

Performs the + operation. Read more
§

impl<T> AddAssign<Vector<T>> for Vector<T>where T: AddAssign<T>,

§

fn add_assign(&mut self, rhs: Vector<T>)

Performs the += operation. Read more
§

impl<T> Clone for Vector<T>where T: Clone,

§

fn clone(&self) -> Vector<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<T> Debug for Vector<T>where T: Debug,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<T> Default for Vector<T>where T: Default,

§

fn default() -> Vector<T>

Returns the “default value” for a type. Read more
§

impl<'de, T> Deserialize<'de> for Vector<T>where T: Deserialize<'de>,

§

fn deserialize<__D>( __deserializer: __D ) -> Result<Vector<T>, <__D as Deserializer<'de>>::Error>where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
§

impl<T> Display for Vector<T>where T: Display + Copy,

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<T, D> Div<D> for Vector<T>where T: Copy + Div<D, Output = T>, D: Copy,

Scalar division.

§

type Output = Vector<T>

The resulting type after applying the / operator.
§

fn div(self, rhs: D) -> Vector<T>

Performs the / operation. Read more
§

impl<T, D> DivAssign<D> for Vector<T>where T: Copy + DivAssign<D>, D: Copy,

Assigning scalar division.

§

fn div_assign(&mut self, rhs: D)

Performs the /= operation. Read more
§

impl<'a, T> From<&'a (T, T)> for Vector<T>where T: Copy,

§

fn from(coords: &'a (T, T)) -> Vector<T>

Converts to this type from the input type.
§

impl<'a, T> From<&'a Vector<T>> for Vector<T>where T: Copy,

§

fn from(v: &'a Vector<T>) -> Vector<T>

Converts to this type from the input type.
§

impl<T> From<&Point<T>> for Vector<T>where T: Copy,

§

fn from(p: &Point<T>) -> Vector<T>

Converts to this type from the input type.
§

impl<T> From<&Vector<T>> for Point<T>where T: Copy,

§

fn from(v: &Vector<T>) -> Point<T>

Converts to this type from the input type.
§

impl<T> From<[T; 2]> for Vector<T>where T: Copy,

§

fn from(coords: [T; 2]) -> Vector<T>

Converts to this type from the input type.
§

impl<T> From<(T, T)> for Vector<T>where T: Copy,

§

fn from(coords: (T, T)) -> Vector<T>

Converts to this type from the input type.
§

impl<T> From<Point<T>> for Vector<T>

§

fn from(p: Point<T>) -> Vector<T>

Converts to this type from the input type.
§

impl<T> From<Vector<T>> for Point<T>

§

fn from(v: Vector<T>) -> Point<T>

Converts to this type from the input type.
§

impl<T> Hash for Vector<T>where T: Hash,

§

fn hash<__H>(&self, state: &mut __H)where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<T> MapPointwise<T> for Vector<T>where T: CoordinateType,

§

fn transform<F>(&self, transformation: F) -> Vector<T>where F: Fn(Point<T>) -> Point<T>,

Point wise transformation.
§

impl<T, M> Mul<M> for Vector<T>where T: CoordinateType<Output = T> + Mul<M>, M: Copy,

Scalar multiplication.

§

type Output = Vector<T>

The resulting type after applying the * operator.
§

fn mul(self, rhs: M) -> Vector<T>

Performs the * operation. Read more
§

impl<T, M> MulAssign<M> for Vector<T>where T: Copy + MulAssign<M>, M: Copy,

In-place scalar multiplication.

§

fn mul_assign(&mut self, rhs: M)

Performs the *= operation. Read more
§

impl<T> Neg for Vector<T>where T: Neg<Output = T>,

§

type Output = Vector<T>

The resulting type after applying the - operator.
§

fn neg(self) -> Vector<T>

Performs the unary - operation. Read more
§

impl<T> PartialEq<Vector<T>> for Vector<T>where T: PartialEq<T>,

§

fn eq(&self, other: &Vector<T>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<T> Serialize for Vector<T>where T: Serialize,

§

fn serialize<__S>( &self, __serializer: __S ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<T> Sub<Vector<T>> for Point<T>where T: Copy + Sub<T, Output = T>,

Subtract a vector.

§

type Output = Point<T>

The resulting type after applying the - operator.
§

fn sub(self, rhs: Vector<T>) -> <Point<T> as Sub<Vector<T>>>::Output

Performs the - operation. Read more
§

impl<T> Sub<Vector<T>> for Vector<T>where T: Sub<T, Output = T>,

Vector subtraction.

§

type Output = Vector<T>

The resulting type after applying the - operator.
§

fn sub(self, rhs: Vector<T>) -> Vector<T>

Performs the - operation. Read more
§

impl<T> SubAssign<Vector<T>> for Vector<T>where T: SubAssign<T>,

§

fn sub_assign(&mut self, rhs: Vector<T>)

Performs the -= operation. Read more
§

impl<T> Sum<Vector<T>> for Vector<T>where T: Zero<Output = T> + Add<T>,

Compute the sum of all vectors in the iterator. If the iterator is empty, (0, 0) is returned.

§

fn sum<I>(iter: I) -> Vector<T>where I: Iterator<Item = Vector<T>>,

Method which takes an iterator and generates Self from the elements by “summing up” the items.
§

impl<T, Dst> TryCastCoord<T, Dst> for Vector<T>where T: Copy + NumCast, Dst: Copy + NumCast,

§

fn try_cast(&self) -> Option<<Vector<T> as TryCastCoord<T, Dst>>::Output>

Try to cast to vector of target data type.

Conversion from float to int can fail and will return None. Float values like infinity or non-a-number have no integer representation.

Examples
use iron_shapes::vector::Vector;
use iron_shapes::traits::TryCastCoord;

let v_int = Vector::new(1,2);
let maybe_v_float: Option<Vector<f64>> = v_int.try_cast();

assert_eq!(maybe_v_float, Some(Vector::new(1.0, 2.0)));

// Conversion from float to int can fail.

let w_float = Vector::new(42.0, 0. / 0.);
let maybe_w_int: Option<Vector<i32>> = w_float.try_cast();

assert_eq!(maybe_w_int, None);
§

type Output = Vector<Dst>

Output type of the cast. This is likely the same geometrical type just with other coordinate types.
§

fn cast(&self) -> Self::Output

Cast to target data type. Read more
§

impl<T> Zero for Vector<T>where T: Zero,

§

fn zero() -> Vector<T>

Get zero-vector.

Examples
use iron_shapes::vector::{Vector, Zero};

let a = Vector::zero();
let b = Vector::new(0, 0);

assert_eq!(a, b);
§

fn is_zero(&self) -> bool

Check if this is the zero-vector.

Examples
use iron_shapes::vector::{Vector, Zero};

assert!(Vector::<usize>::zero().is_zero());
source§

fn set_zero(&mut self)

Sets self to the additive identity element of Self, 0.
§

impl<T> Copy for Vector<T>where T: Copy,

§

impl<T> Eq for Vector<T>where T: Eq,

§

impl<T> StructuralEq for Vector<T>

§

impl<T> StructuralPartialEq for Vector<T>

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for Vector<T>where T: RefUnwindSafe,

§

impl<T> Send for Vector<T>where T: Send,

§

impl<T> Sync for Vector<T>where T: Sync,

§

impl<T> Unpin for Vector<T>where T: Unpin,

§

impl<T> UnwindSafe for Vector<T>where T: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

const: unstable · source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

const: unstable · source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

const: unstable · source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<S, T> Mirror<T> for Swhere T: Copy + Zero + Sub<T, Output = T>, S: MapPointwise<T>,

§

fn mirror_x(&self) -> S

Return the geometrical object mirrored at the x axis.

§

fn mirror_y(&self) -> S

Return the geometrical object mirrored at the y axis.

§

impl<S, T> RotateOrtho<T> for Swhere T: Copy + Zero + Sub<T, Output = T>, S: MapPointwise<T>,

§

fn rotate_ortho(&self, a: Angle) -> S

Rotate the geometrical shape by a multiple of 90 degrees.
§

impl<S, T> Scale<T> for Swhere T: Copy + Mul<T, Output = T>, S: MapPointwise<T>,

§

fn scale(&self, factor: T) -> S

Scale the geometrical shape. Scaling center is the origin (0, 0).
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
§

impl<S, T> Translate<T> for Swhere T: Copy + Add<T, Output = T>, S: MapPointwise<T>,

§

fn translate(&self, v: Vector<T>) -> S

Translate the geometrical object by a vector v.
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
const: unstable · source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
const: unstable · source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,

source§

impl<T> IdType for Twhere T: Debug + Clone + Eq + Hash + 'static,

source§

impl<T> IdTypeMT for Twhere T: IdType + Sync + Send,

§

impl<T> TextType for Twhere T: Eq + Hash + Clone + Debug,